Keith Smith, Chief Engineer for the Chevron Group explains how innovative thinking, digital technology and industry collaboration has resulted in a new way of managing Mobile Carriageway Closures.
We have to change the way we think about roadworks if we want to change the way we do roadworks. If we still think of roadworks in the same way we did it in the 1990’s we will always struggle with safety, incursions and maintaining traffic flow on our network in the 21st century.
Traffic management is a strange beast in some ways. There are times when it feels like things never change or that change is slow and tortuous but then we look back and see how far we have come in the past 10 or 20 years, we realise that change does happen and when it does, it makes a real difference.
We have seen tremendous improvements in road user safety, road users are having better experiences at roadworks thanks to the implementation of correct engineering, we are supporting people with additional mobility needs, we are reducing our carbon footprint and we are delivering operational efficiencies and improvements.
These are all really important improvements but the challenge, of course, is to keep pushing, collaborating and striving for more.
The introduction of our Enhanced Mobile Carriageway Closure technique which has been accepted by National Highways is a great example of what can be achieved.
Essentially, the EMCC technique allows traffic management contractors to deploy an agile vehicle displaying an authorised sign to create a traffic-free environment for a short period of time. The van is equipped with an incursion warning system to alert workers of errant vehicles entering the work zone. The EMCC can be deployed during operations including the installation, maintenance, switching, or removal of traffic management systems. This includes supporting works operations that requires short periods of traffic-free time. Ultimately, it provides an alternative to the use of rolling roadblocks when delivering planned roadworks projects.
And it came about because we went back to basics and considered the engineering and changed our thinking on how and why we do things. We simply couldn’t go on making TTM operations more complex by considering elements of the process in isolation. We had all the elements we needed to enable us to do this. We just needed to rethink about how we could pull them together to deliver roadworks more efficiently with improved safety and customer experience.
The use of an MCC to create a traffic free environment has been available to providers since the publication of Traffic Signs Manual Chapter 8 in 2006, but it required scarce and expensive resources which made the technique impractical and therefore it was never adopted.
We collaborated with HRS, who really are leading the way in delivering digital change to the industry and looked at their IIPAWS® (Intellicone® Incursion Prevention & Warning System). We were able to consider the MCC technique as well as the Convoy Control Vehicle technique which was approved in 2014, and enhance it with IIPAWS®.
In 2019, we began a series of self-funded, EMCC trials in conjunction with Costain. Our focus was to create short, traffic-free environments for work sites which were impacted by high traffic volumes, specific site features or works activities while improving safety standards, reducing disruption to customers and simultaneously minimising risks to road workers and road users with increased working windows to improve delivery.
The beauty of the EMCC is that it benefits everyone – contractors, TM providers and road users. It even benefits the environment.
For the TM provider, there is no lost time organising and waiting for a rolling roadblock which frees up those resources. EMCC gives direct control to the TM provider and contractor to start a rolling roadblock as soon as conditions allow or the requirement occurs. The trials have also shown that the EMCC can be safely activated at a higher traffic count which allows works to commence at a known time. Road workers are protected by the IIPAWS® incursion warning system.
For the contractor, this new technique gives them more control over their works schedule because we can provide a known and certain start time and give them a longer working window which will obviously take pressure of their timeframes and their workers and reduce the risks to those operations. It can also allow some works to move from night works to daytime works which has obvious benefits. To give you an example, we ran an EMCC for a client who needed to carry out crane works adjacent to an A road. These works were scheduled to be done at night but by deploying an EMCC, the client was able to reschedule them to daytime works and avoid closing the road over several nights, reducing cost and improving worker safety, in addition to eliminating environmental impact of diversions.
For the road user, we can eliminate the need for diversions which often take them onto unfamiliar side roads when they are possibly tired or have had a long day. This reduces stress levels and minimises the chance of getting lost or frustrated with the works. With the EMCC, drivers stay on the carriageway, follow the EMCC vehicle at a slower and controlled speed for a short period of time and then pick up their speed when the EMCC has ended, and the control vehicle has moved off the carriageway. Our trials established that with the EMCC system, the delay to road users is between 3 – 5 minutes which is significantly less than a diversion onto trunk route.
If we go back to our client on the A road, using this technique, they avoided having to divert over 10,000 road users through local roads during their crane operations. And of course, every eliminated diversion reduces miles travelled which will ultimately reduce carbon emissions on every shift, benefitting the environment.
The new EMCC trial project is an excellent example of how we delivered change by working collaboratively in an honest, open and enjoyably creative manner and underpinning everything with traffic engineering theory. Chevron TM worked with Costain to conceive and develop the concept and engaged with National Highways technical leads and specialists to refine and develop the test programme, reviewing, modifying and retesting this new way of working to improve safety, delivery and customer service for contractors, TM providers, road users and our planet. It also better utilises the finite resources available in responder organisations, providing another route to ensuring that everyone gets home safe and well.
About Keith Smith
Keith Smith is a professional engineer with a general highways engineering and construction background and is a leading practitioner and authority in temporary traffic management engineering and roadwork design, lecturing, researching and proactively supporting the Chevron Group and other industry organisations to implement improvements in their operational functions. Known for his collaborative and open and honest conversations, he has been at the forefront of developing learning and new techniques in the industry for nearly 30 years.